Leaf morphology and chlorophyll in Piper reticulatum (Piperaceae) under conditions of light and shadow at La Selva Biological Station, Costa Rica

Leaf morphology and chlorophyll in Piper reticulatum (Piperaceae) under conditions of light and shadow at La Selva Biological Station, Costa Rica

Authors

  • Sergio A. Villegas-Retana Universidad Nacional
  • María Chavarría-Soto Universidad Nacional

DOI:

https://doi.org/10.22458/urj.v8i2.1569

Keywords:

Piperacea, specific leaf area, blade thickness, leaf shape, amount of chlorophyll, wet tropical forest.

Abstract

Tropical plants have a diverse morphology and physiology adapted to capture light within the forest. Piper retuculatum is a small tree that grows in illuminated and low light environments. We randomly collected 25 mature leaves from each condition (from several plants), and determined the specific leaf area (SLA), leaf thickness and shape; and amount of chlorophyll. Plants from both light classes differed in SLA, thickness, shape and chlorophyll content of the leaves. Those exposed to light had higher values for shape and thickness while low light plants had leaves with more SLA and chlorophyll content values. P. reticulatum presents great plasticity for leaf shape which increases its performance and allows it to compete with advantage against other plant species.

Author Biographies

Sergio A. Villegas-Retana, Universidad Nacional

Universidad Nacional de Costa Rica, Escuela de de Ciencias Biológicas, Heredia Costa Rica

María Chavarría-Soto, Universidad Nacional

Universidad Nacional de Costa Rica, Escuela de de Ciencias Biológicas, Heredia Costa Rica

References

Chazdon, R.L. & Kaufmann., S. (1993). Plasticity of Leaf Anatomy of Two Rain Forest Shrubs in Relation to Photosynthetic Light Acclimation. Functional Ecology, 7 (4), 385-394.

Condit, R., Pérez, R. & Daguerre, N. (2011). Trees of Panamá and Costa Rica. New York: Princeton Field Guides.

Franks, N.R. & Britton, N.F. (2000). The Possible Role of Reaction-Diffusion in Leaf Shape. Biological Sciences, 267 (1450), 1295-1300.

Gamon, J.A., Kitajima, K., Mulkey, S.S., Serrano, L. & Wright, S.J. (2005). Diverse Optical and Photosynthetic Properties in a Neotropical Dry Forest during the Dry Season: Implications for Remote Estimation of Photosynthesis. Biotropica, 37 (4), 547-560.

Girma, M., Kofoid, K.D. & Reese, J.C. (1998). Sorghum Germplasm Tolerant to Greenbug (Homoptera: Aphididae) Feeding Damage as Measured by Reduced Chlorophyll Loss. Journal of the Kansas Entomological Society, 71 (2), 108-115.

Laboratorio de sistemática de plantas vasculares. (2011). Sistemática de plantas vasculares. Uruguay: Instituto de Ecología y Ciencias Ambientales.

Letourneau, F., Schlichter, T. & Andenmatten, E. (Sin fecha). Manejo Silvícola de Renovales de Ciprés de la Cordillera. Idia XXI, 78-81.

Markesteijn, L., L., Poorter & F., Bongers. 2007. Light-Dependent Leaf Trait Variation in 43 Tropical Dry Forest Tree Species. American Journal of Botany, 94 (4), 515-525.

McClendon, J.H. (1962). The Relationship Between the Thickness of Deciduous Leaves and their Maximum Photosynthetic Rate. American Journal of Botany, 49 (4), 320-322.

Mott, K.A. & Michaelson., O. (1991). Amphistomy as an Adaptation to High Light Intensity in Ambrosia cordifolia (Compositae). American Journal of Botany, 78 (1), 76-79.

Organization for Tropical Studies. (2014). La Selva Biological Station. Sarapiquí, Costa Rica. Recuperado de http://www.ots.ac.cr/index.php?option=com_content&task=view&id=162&Itemid=348

Páez, A., Paz, V. & López, J. C. (2000). Growth and physiological responses of tomato plants cv. Río Grande during may to july season. Effect of shading. Rev. Fac. Agron. (LUZ). 17, 173-184.

Pierce, L.L, Running, S.W. & Walker, J. (1994). Regional-Scale Relationships of Leaf Area Index to Specific Leaf Area and Leaf Nitrogen Content. Ecological Applications, 4 (2), 313-321.

Piña, M. & Arboleda, M.E. (2010). Efecto de dos ambientes lumínicos en el crecimiento inicial y la cantidad de plantas de Crescentia cujete. Bioagro 22 (1), 61-66.

Puertólas-Simón, J., Benito-Matías, L.F. & Peñuelas-Rubira, J.L. (2008). Efecto del sombre en el vivero sobre la calidad de planta y el comportamiento en campo de Quercusilex y Pinushalepensis. Cuadernos de la Sociedad Española de Ciencias, 189-194.

Raven, P.H., Evert, R.F. & Eichhorn, S.E. (1992). Biología de las plantas. 4ta edición. Ed. REVERTÉ. New York.

Shaw, J. (1987). Experimental Taxonomy of Weissia controversa and W. sharpii (Musci: Pottiaceae). Silstematic Botany, 12 (3), 381-389.

Valladares, F. (2004). Ecología del bosque mediterráneo en un mundo cambiante. Ministerio de Medio Ambiente, EGRAF, S. A., Madrid. Pp. 191-227.

Valladares, F., Skillman, J.B. & Pearcy, R.W. (2002). Convergence in Light Capture Efficiencies among Tropical Forest Understory Plants with Contrasting Crown Architectures: A Case of Morphological Compensation. American Journal of Botany, 89 (8), 1275-1284.

Published

2016-10-12

How to Cite

Villegas-Retana, S. A., & Chavarría-Soto, M. (2016). Leaf morphology and chlorophyll in Piper reticulatum (Piperaceae) under conditions of light and shadow at La Selva Biological Station, Costa Rica. UNED Research Journal, 8(2), 255–258. https://doi.org/10.22458/urj.v8i2.1569

Issue

Section

Articles
Loading...