Mineral nutrition and photosynthesis of Prosopis alba (Fabaceae) seedlings under saline stress

Mineral nutrition and photosynthesis of Prosopis alba (Fabaceae) seedlings under saline stress

Authors

  • Diego Ariel Meloni Facultad de Agronomía y Agroindutrias. Universidad Nacional de Santiago del Estero, Av. Belgrano (S) 1912, Santiago del Estero, Argentina;
  • Diolina Moura Silva Departamento de Ciências Biológicas. Universidade Federal do Espirito Santo; Vitória (ES) Bras
  • Ramón Ledesma Facultad de Agronomía y Agroindutrias. Universidad Nacional de Santiago del Estero, Av. Belgrano (S) 1912, Santiago del Estero, Argentina;
  • Graciela Inés Bolzón Departamento de Engenharia e Tecnologia Florestal, Universidade Federal do Paraná; Curitiba (PR) Brasi

DOI:

https://doi.org/10.22458/urj.v9i2.1903

Keywords:

saline stress, nitrogen metabolism, chlorophyll a fluorescence, Prosopis alba

Abstract

Algarrobo blanco (Prosopis alba G.) is a species of forest significance native to the Western Chaco phytogeographic region. Despite being considered saline-tolerant, the physiological mechanisms that endow the species with such characteristics have not been dilucidated. This paper aimed to evaluate the impact of saline stress upon the mineral nutrition and photosynthesis of algarrobo blanco seedlings. The seedlings were grown hydroponically in 5 l containers using a 25% Hoagland nutritive solution with or without the supplementation of 500 mM of NaCl and kept in growth chamber. Daily samples were taken to quantify both the Na+, K+, Cl-, NO3- concentrations and the nitrate reductase enzymatic activity; the chlorophyll a fluorescence emission was also measured. Root and leaf biomasses were determined after seven days of treatment. An entirely randomized experimental design with ten repetitions was used and the data analyzed with ANOVA and the Tukey Test. The saline stress inhibited the development of the aerial part but had no effect on the root development causing the increase of the root/aerial part ratio. Salinity made the leaf Na+ and Cl- concentrations increase and those of K+ and NO3- decrease; however, the K+ concentrations kept high throughout the entire test. Together with a decrease in the NO3- concentration, a lower nitrate reductase activity occurred out of the fourth day of treatment. A decrease in the values of qP and Fv/Fm and an increase in the NPQ that altogether indicates that saline stress caused photoinhibition was also observed. These results show that the species tolerates saline concentrations equivalents to sea water; the increase in the root/aerial part rate and the high leaf concentrations of K+ under saline-stress conditions may both be highlighted as its physiological adaptations to saline environments. Growth inhibition occurs because of the decrease in the nitrate reductase activity and photoinhibition.

References

Ben Dkhil, B., & Denden, M. (2010). Biochemical and mineral responses of okra seeds (Abelmoschus esculentus L. variety Marsaouia) to salt and thermal stresses. Journal of Agronomy, 9, 29-37. doi:10.3923/ja.2010.29.37

Bradford, M. N. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 7, 248-254. doi:10.1016/0003-2697(76)90527-3

Bybordi, A., & Ebrahimian, E. (2011). Effect of salinity stress on activity of enzymes involved in nitrogen and phosphorous metabolism case study: Canola (Brassica napus L.). Asian Journal of Agricultural Research, 5, 208-214. doi:10.3923/ajar.2011.208.214

Carillo, P., Mastrolonardo, G., Nacca, F., & Fuggi, A. (2005). Nitrate reductase in durum wheat as affected by nitrate reduction and salinity. Functional Plant Biology, 32, 209-219. doi:10.1071/FP04184

Carillo, P., Mastrolonardo, G., Nacca, F. Parisi, D, Verlotta, A., & Fuhhi, A. (2008). Nitrogen metabolism in durum wheat under salinity: accumulation of proline and glycine betaine. Functional Plant Biology, 35, 412-426.

Carillo, P., Annunziata, M. G., & Pontecorvo, G. (2011). Salinity stress and salt tolerance. En Shanker, A & Venkateswarlu, B. (Eds.). Abiotic stress in plants. Mechanisms and adaptations, 21-38. doi:10.5772/22331

Chen, Z., Newman, L., Zhou, M., Mendham, N., Zhang, G., & Shabala, S. (2005). Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant Cell Environment, 28, 1230-1246. doi:10.1111/j.1365-3040.2005.01364.x

Debouba, M., Maâroufi-Dghimi, H., Suzuki, A., Ghorbel, M. H., & Gouia, H. (2007). Changes in growth and activity of enzymes involved in nitrate reduction and ammonium assimilation in tomato seedlings in response to NaCl stress. Annals of Botany 99, 1143-1151. doi:10.1093/aob/mcm050

Ebrahimian, E., & Bybordi, A. (2011). Influence of different ratios of nitrate and ammonium and silicon on growth, nitrate reductase activity and fatty acid composition of sunflower under salt stress. Journal of Food, Agriculture and Envirnoment, 9, 438-443.

Ehlting, B., Dluzniewska, H., Dietrich, H., Selle, A., Teuber, M., Hänsch, R., Nehls, U., Polle, A., Schnitzler, J. P., Rennenberg, H., & Gessler, A. (2007). Interaction of nitrogen nutrition and salinity in Grey poplar (Populus tremula x alba). Plant, Cell and Environment, 30, 796-811. doi:10.1111/j.1365-3040.2007.01668.x

Giménez, A. M., &. Moglia, J. G. (2003). Árboles del Chaco Argentino. Guía para el reconocimiento dendrológico. Secretaría de ambiente y desarrollo sustentable – Facultad de Ciencias Forestales UNSE. Argentina.

Gong, B., Wen, D., Vanden Langenberg, K., Wei, M., & Yang, F. (2013). Comparative effects of NaCl and NaHCO3 stress on photosynthetic parameters, nutrient metabolism, and antioxidant system in tomato leaves. Scientia Horticulturae, 157, 1-12. doi:10.1016/j.scienta.2013.03.032

Kawakami, E. M., Osterhuis, D. M. & Snider, J. L. (2013). Nitrogen assimilation and growth of cotton seedlings under NaCl salinity and in response to urea application with NBPT and DCD. Journal of Agronomy and Crop Science, 199, 106-117. doi:10.1111/jac.12002

Klepper, L., Flesher, D., & Hageman, R. H. (1971). Generation of reduced Nicotinamide Adenine Dinucleotide for nitrate reduction in green leaves. Plant Physiology, 20, 580-590. doi:10.1104/pp.48.5.580

Magalhães de Aragão, R., Silva, J. S., Lima, C. S., &. Silveira, J. A. G. (2011). Salinidade modula negativamente a absorção e assimilação de NO3- em plantas de feijão de corda. Revista Ciência Agronômica, 42, 382-389. doi:10.1590/S1806-66902011000200017

Malavolta, E., Vitti, G. C., &. Oliveira, S. A. (1989). Avaliação do estado nutricional das plantas: princípios e aplicações. Associação Brasileira para a Pesquisa da Potassa e do Fosfato, Piracicaba, Brasil.

Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescenceea practical guide. Journal of Experimental Botany, 51, 659-668. doi:10.1093/jexbot/51.345.659

Meloni, D. A., Gulotta, M. R., & Martínez, C. A. (2008). Salinity tolerance in Schinopsis quebracho colorado: seed germination, growth and metabolic responses. Journal of Arid Environments, 72, 1785-1792. doi:10.1016/j.jaridenv.2008.05.003

Meloni, D. A., & Matínez, C. A. (2009). Glycinebetaine improves salt tolerante in vinal (Prosopis ruscifolia Griesbach) seedlings. Brazilian Journal of Plant Physiology, 21, 233-241. doi:10.1590/S1677-04202009000300007

Meloni, D. A. (2012). Respuestas fisiológicas a la suplementación con calcio de plántulas de vinal (Prosopis ruscifolia G.) estresadas con NaCl. Revista de Ciencias Agrarias Universidad Nacional de Cuyo, 44, 79-88.

Meloni, D.A., Silva, D. M., & Bolzón, G. (2015). Efectos de la adición de calcio sobre la fisiología de plántulas de vinal (Prosopis ruscifolia G.) bajo estrés salino. Revista de Ciencias Forestales Quebracho, 23, 8-17.

Miura, K. (2013). Nitrogen and phosphorous nutrition under salinity stress. En: Ahmad, P., Azooz, M. M., & Prasad, M. N. V. (Eds.) Ecophysiology and responses of plants under salt stress, (pp, 425-441). Springer, Germany.

Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. doi:10.1146/annurev.arplant.59.032607.092911

Munns, R., James, R. A, Xu, B., Athman, A., Conn, S. J., Jordans, C., Byrt, C. S., Hare, R. A., Tyerman, S. D., Tester, M., Plett, D., &. Gilliham, M. (2012). Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature, 30, 360-366. doi:10.1038/nbt.2120

Naumann, J. C., Young, D. R., & Anderson, J. E. (2007). Linking leaf chlorophyll fluorescence properties to physiological responses for detection of salt and drought stress in coastal plant species. Physiologia Plantarum, 131, 422-433. doi:10.1111/j.1399-3054.2007.00973.x

Murchie, E. H., & Lawson, T. (2013). Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. Journal of. Experimental Botany, 64, 3983-3998. doi:10.1093/jxb/ert208

Pinnola, A., Dall’Osto, L., Gerotto, C., Morosinotto, T., Bassi, R., & Alboresi, A., (2013). Zeaxanthin binds to light-harvesting complex stress-related protein to enhance nonphotochemical quenching in Physcomitrella patens. Plant Cell. 25, 3519-3534. doi:10.1105/tpc.113.114538

Reda, M., Migocka, M., & Klobus, G. (2011). Effect of short-term salinity on the nitrate reductase activity in cucumber roots. Plant Science, 180, 783-788. doi:10.1016/j.plantsci.2011.02.006

Reginato, M., Sgroy, M., Llanes, A., Cassán, F., & Luna, V. (2012). The american halophyte Prosopis strombulifera, a new potential tool to confer salt tolerance to crops. En: Crop production for agricultural improvement. (pp, 136-167). Springer, Berlin.

Siddiqui, M. H., Mohammad, F., &. Khan, M. N. (2009). Morphological and physio-biolochemical characterization of Brassica juncea L. Ccem. & Coss, genotypes under salt stress. Journal of Plant Interactions, 4, 67-80. doi:10.1080/17429140802227992

Siddiqui, M. H., Mohammad, F., Khan, M. A. A., Mohamed, H., & Al-Whaibi, H. (2012). Cumulative effect of nitrogen and sulphur on Brassica juncea L. genotypes under NaCl stress. Protoplasma, 249, 139-253. doi:10.1007/s00709-011-0273-6

Silva, M. C., Gulotta, M. R., Cisneros, A. B., Bravo, E., Ledesma, R., & Meloni, D. A. (2013). Ajuste osmótico en algarrobo blanco (Prosopis alba G.) bajo condiciones de estrés salino. XXX Jornadas Científicas, Asociación de Biología de Tucumán, Argentina.

Yousfi, S., Serret, M. D., Márquez, A. J., Voltas, J., & Araus, J. L. (2012). Combined use of δ13C, δ18O and δ15N tracks nitrogen metabolism and genotypic adaptation of durum wheat to salinity and water deficit. New Phytologist, 194, 230-244. doi:10.1111/j.1469-8137.2011.04036.x

Velarde, M., Felker, P., & Degano, C. (2003). Evaluation of Argentine and Peruvian Prosopis germoplasm for growth at seawater salinities. Journal of Arid Environments, 55, 515-531. doi:10.1016/S0140-1963(02)00280-X

Zhang, Q. Y., Wang, L. Y., Kong, F. Y., Deng, Y. S., Li, B., &. Meng, W. (2012). Constitutive accumulation of zeaxanthin in tomato alleviates salt stress-induced photoinhibition and photooxidation. Physiologia Plantarum, 146, 363-373. doi:10.1111/j.1399-3054.2012.01645.x

Published

2017-09-28

How to Cite

Ariel Meloni, D., Moura Silva, D., Ledesma, R., & Inés Bolzón, G. (2017). Mineral nutrition and photosynthesis of Prosopis alba (Fabaceae) seedlings under saline stress. UNED Research Journal, 9(2). https://doi.org/10.22458/urj.v9i2.1903

Issue

Section

Articles
Loading...