BIOGEOGRAPHIC IMPLICATIONS OF EVOLUTIONARY TRENDS IN ONYCHOPHORANS AND SCORPIONS

Julián MONGE-NÁJERA and Wilson R. LOURENÇO

¹Biologia Tropical, Universidad de Costa Rica, San José, COSTA RICA ²Laboratoire de Zoo/ogle (Arthropodes), MN.H.N., 61 rue de Buffon 75005 Paris, FRANCE

ABSTRACT.- A comparison with another group of terrestrial predatory invertebrates, the Order Scorpiones, suggests that the lack of adaptations to city microenvironments has been the central limitation to further biogeographic radiation in the phylum Onychophora.

KEY-WORDS .- Evolution, Ecology, Biogeography, Onychophora, Scorpions

RÉSUMÉ.- Une correlation entre des Onychophores et un autre groupe d'invertCbrés terrestres predateurs, l'ordre Scorpiones, suggère que l'absence d'une adaptation aux microenvironnements andes a été le principal facteur limitant d'une plus ample radiation biogeographique du phylum Onychophora.

MOTS-CLES.- Evolution, Ecologic, Biogeographic, Onychophora, Scorpions

INTRODUCTION

A recent cladistic analysis of Cambrian, Carboniferous and extant onychophorans suggested the existence of a common ancestor with armoured plates, an annulated body and long oncopods ('legs) as well as later taxa with radically different body characteristics, possibly as adaptation to life in reduced spaces (MONGE-NAJERA, 1995). Furthermore, physiological details are consistent with the hypothesis that these animals colonized land via the littoral zone. This may have prevented the type of xeric habitat adaptations that played a role in the large geographic and taxonomic radiation of insects, for example (MONGE-NAJERA, 1995).

The comparative method is useful to examine evolutionary trends such as those mentioned above, but the selection of a proper comparative taxon is very important for a meaningful analysis. Scorpions seem appropriate because, like onychophorans, they are an old group of invertebrate predators which has not radiated taxonomically to the extend of insects (see POLIS, 1990; LOURENÇO, 1994).

The present paper, based on a variety of biological characters, compares both groups. Scorpion and onychophoran characteristics were tabulated from several sources detailed with Appendix I.

SIMILARITIES BETWEEN ONYCHOPHORANS AND SCORPIONS

The analysis of Appendix I indicates that scorpions and onychophorans share several characteristics, such as bodies adapted to life in small spaces and thus small enough to operate with open circulatory systems. Both prevent dehydration by becoming active during the night. They have an endogenous circadian rhythm and wheneverpossible hunt near the entrance of a burrow, avoiding hard-bodied or dangerous prey. At least some preoral digestion is known in the two groups, which can survive prolonged periods without food. Both are restricted to relatively predictable microclimates, are not greatly affected by vegetation type and survive in their burrows or caves when their habitat is being burned. While reproductive diapause may be frequent in scorpions and onychophorans, parthenogenesis and theratological malformations are reported to be infrequent in both.

Other similar characteristics are longevity, gestation time and the ability of females to store semen, needing only one insemination in their lifetime, while males mate several times. Larger females of the two taxa have bigger litters while litter size is negatively correlated with the body size of young. Finally, both share high mortality rates shortly after birth (with important exceptions in scorpions) and an initial 1:1 sex ratio which skews toward females because of higher male mortality. Both seem to have populations of similar densities which do not fluctuatly greatly in mumbers.

DIFFERENCES BETWEEN ONYCHOPHORANS AND SCORPIONS

The physiology of onychophorans, less adapted to resist dehydration, is characterized by a tracheal system which cannot be closed and by the elimination of uric acid and moist fecal matter. They are absent from arid zones and occupy a narrower altitude range and burrows which are more constant climatically (Appendix I). Furthermore, they walk more slowly and a greater proportion of the population becomes active every night. When a prey is found, relatively more of it is ingested and it cannot be moved to the safety of the burrow for consumption.

Onychophorans develop more rapidly (moulting more often), reproduce while younger and have smaller litters, investing more in each young. Adult mortality rates are lower.

EVOLUTIONARY TRENDS

The biology of onychophorans is even less known than that of scorpions; thus this analysis is based on the assumption that the few onychophoran species to which this compilation applies are representative. This is reasonable because the phylum is relatively homogeneous in what is known about its morphology, physiology and basic behavior (RUHBERG, 1985; MONGE-NÁJERA *el* al., 1993; MONGE-NÁJERA and MORERA, 1994; MONGE-NAJERA, 1995).

In comparison with scorpions, onychophorans are an older but less diverse taxon, even if the number of described species increases two- or threefold after biochemical reanalysis, as seems possible in the light of recent findings (RUHBERG, 1992). Favored hypotheses suggest that the number of species should be higher in taxa that are older, have smaller body size or bear ovipositors (ZEH *et* al., 1989). The differences in biodiversity of onychophorans and scorpions are not in accordance with these hypotheses.

Apparently onychophorans colonized land via the littoral zone, not the freshwater habitat (MONGE-NÁJERA, 1995), which may be the origin of most ecological differences, because the resulting physiology is poorly adapted to arid microhabitats (MONGE-NÁJERA, 1995). Onychophorans are more restricted geographically and are limited in their movements to the close range of appropriate burrows. Curiously this has not produced great reproductive differences, apart from the smaller litters and marked precociousness of onychophorans.

ACKNOWLEDGMENTS

Virginia Van der Lande (University of Nottingham) made valuable suggestions to an earlier draft. The senior authors work was self-financed.

REFERENCES

- CAMPIGLIA, S. & R. LAVALLARD. 1989. Contribution a la biologie de *Peripatus acacioi* MARCUS et MARCUS (Onychophora, Peripatidae). VI. La mue ala naissance. Vie Milieu, 39: 49-55.
- KOVOOR, J., W.R. LOURENO & A. MUIJOZ-CUEVAS. 1987. Conservation des spermatozoldes dans les voies gCnitales des < femelles et biologic de la reproduction des Scorpions (Chélicérates). C.R. Acad. Sc. Paris, 304 (10), 5Cr. III: 259-264.</p>
- LAVALLARD, R. & S. CAMPIGLIA. 1975. Contribution a la biologic de *Peripatus acacioi* MARCUS et MARCUS (Onychophora, Peripatidae) V. Etude des naissances dans un elevage de laboratoire. Zool. Anz. Jena, 195: 338-350.

LAVALLARD, R, S. CAMPIGLIA, E. P. ALVAREZ and C.M.C. VALLE. 1975. Contribution a Ia biologic de Peripatus acacioi

MARCUS et MARCUS (Onychophore). III. Etude descriptive de l'habitat. Vie Milieu, 25: 87-118.

LOURENÇO, W.R. 1992 ["1991"]. Biogeographic Cvolulive, ecologic et les strategies biodémographiques chez les scorpions néotropicaux. C.R. Soc. BiogCogr., 67: 17 1-190.

LOURENÇO, W.R. and 0. CUELLAR. 1994. Notes on the geography of parthenogenetic scorpions. Biogeographica, 70 (1): 19-23.

- LOURENÇO, W.R. 1994. Diversity and endemism in Tropical versus Temperate scorpion comunities. Biogeographica, 70 (3): 155-160.
- MONGE-NAJERA, J. 1994 a. Ecological biogeography in the phylum Onychophora. Biogeographica, 70: 111-123.
- MONGE-NAJERA, J. 1994 b. Reproductive trends, habitat type and body characteristics in some velvet worms (Onychophora). Rev. Biol. Trop., 42: 613-624.
- MONGE-NAJERA, J. 1995. Phylogeny, biogeography and reproductive trends in the Onychophora. Zool. J. Linn. Soc. London (in press).
- MONGE-NAJERA, J. and B. MORERA B. 1994. Morphological and physiological characteristics of two species of *Epiperipatus* from Costa Rica (Onychophora: Peripatidae). Rev. Biol. Trop., 42: 181-188.
- MONGE-NAJERA, J., Z. BARRIENTOS and F. AGUILAR. 1993. Behavior of *Epiperipatus biolleyi* (Onychophora: Peripatidae) under laboratoiy conditions. Rev. Biol. Trop., 41: 689-696.
- POLIS, G.A. (ed). 1990. The biology of scorpions. Stanford University, Stanford, California. 587 pp.
- READ, V.M.St.J. 1985. The ecology of *Macroperipatus torquatus* (Kennel) with special reference to feeding and a taxonomic review. Ph.D. Thesis, University College of North Wales, Bangor.
- READ, V.M.St.J. and R.N. HUGHES. 1987. Feeding behavior and prey choice in *Macroperipatus torquatus* (Onychophora). Proc. Royal Soc.London, (b) 230: 483-506.
- RUHBERG, H. 1985. Die Peripatopsidae (Onychophora). Systematik, Okologie, Chorologie und phylogenetische Aspekte. Zoologica, 137: 1-183.
- RUHBERG, H. 1992. "Peripatus" an approach towards a modern monograph. Berich. Naturwis. Mediz. Verein Innsbruck, supl., 10: 441-458.

RUHBERG, H. and W.P. NU1TING. 1980. Onychophora: feeding, structure, function, behaviour and maintenance (Pararthropoda). Verh. Naturwiss. Ver. Hamburg, 24: 79-87.

SHEAR, WA. & J. KUKALOVA-PECK. 1990. The ecology of Paleozoic terrestrial arthropods: the fossil evidence. Can. J. Zoo!.. 68: 1807-1834.

ZEH, D.W., J.A. ZEH and R.L. SMITH. 1989. Ovipositors, ammons and eggshell architecture in the diversification of terrestrial arthropods. Quart. Rev. Biol., 64: 147-168.

Recu en avril 1995 Accepté en septembre 1995

APPENDIX 1

Comparison of ecological characteristics in the order Scorpiones and the phylum Onychophora (sources listed at end of table).

	Scorpiones	Onychophora
GENERAL DATA AND ADAPTATIONS		
Number of described valid species	1300	85
Earliest known fossils	Silurian	Cambrian
Time of land colonization	Carb-Trias.	Ordovician?
Via of land colonization	Freshwat? ¹	Littoral?
Lower and higher lethal temperatures (°C)	-12 to 45	Near 0-30
Circulatory system	Open	Open
Respiratory structures	Book lung	Tracheae
Sodium/potassium mechanism	Present	Probably
of hydric equilibrium		
Malpighian tubules	Present	Absent?
Coxal glands	Present	Present
Nephrocytes	Present	Present
Lymphatic glands	Present	Absent?
Basic excretoly product	Guamne	Uric acid
Fecal material	Dry	Moist
Water loss	0.025-1 mg/cm ² /hr	0.08-2.0 1 %/min
Relative non-lethal water loss in	30	39
% of body weight		
Time that can survive at 0 RH	7 days	<7mm
Water loss increases at higher temperatures	Yes	Yes?
Can decrease O ₂ consumption to	Yes	?
reduce water loss		
Rate of water recovery from air or	0.0 13	0.43-3.8
substrate (°/dmin)		
Body contents (%) of water at birth 80	80	?
Water content of prey (%)	50-80	?
Metabolic rate (mmO ₂ /g/hr, 25C)	35-123	?

¹ There is sonic disagreement among authors about a marine versus a freshwater route of colonization (see Pous 1990, SHEAR and KUKALOVA-PECK 1990)

HABITAT ECOLOGY		
Predictable environment	Yes	Yes
Altitudinal range (m)	0-5500	0-3000
Individual size at higher sites	Smaller	Smaller/or bigger
Individuals from dry areas smaller	Sometimes	?
Has colonized desert areas	Yes	No
Some species adapted to cave life	Yes	Yes
Species found today in littoral habitats	Yes	No?
Arboreal life developed in some species	Yes	Yes
Soil type correlated with distribution	Yes	Yes?
Taxonomic structure of vegetation	No	No
important in spatial distribution		
Taxonomic structure of vegetation	Yes	No
important in global distribution		
Dorso-ventral compression of body and	Yes	Yes
short legs allow life in small spaces		
Communal behavior in patches of	Yes	Yes
favorable microclimate		
Adults (especially males) travel at greater	Yes	Yes
distances from burrow		
Field undisturbed speed (cm/mm)	76	2.4-3.9
Can survive in periodically burnt habitat	Yes	Yes
Maximum depth of burrow (cm) 100 50	18	2.6
Thermic fluctuation in burrow, as % of external		
fluctuation		
Humidity fluctuation in burrow, as %	16	?
of external fluctuation		
SENSES		
SENSES		
Can detect other animals by air or substrate	Yes	Yes
vibrations		
Able to detect small humidity differences	Yes	No?
Thermophilic	Often	Rarely?
Distance distance in the last deale	V	No.

Able to detect small humidity differences	Yes	No?
Thermophilic	Often	Rarely?
Photonegative, active mainly in dark	Yes	Yes
Orientation by objects and starlight	Yes	?
Detail of image produced by eye	Low?	Medium?
Perception of UV light	Yes?	?
Most activity in first half of night	Yes	Yes
Endogenous circadian rythm	Yes	Yes
Seasonality based on thermal clues	Yes?	?

TROPHIC ECOLOGY

I ROPHIC ECOLOGY		
Species interactions important	Yes	Probably
Specialized, narrow niche	Yes	Yes
Proportion (%) of population active	5-15	Near47
onanyonenight		
Proportion (%) of population that	1-8	Near5O
feedsinanyonenight		
Proportion (%) of nights the individual	<=60	24-67
leaves burrow		0.07.1.6
Normal hours per day outside the burrow	<4	0.27-1.6
Fidelity to burrow	High	Not high
Often hunt from entrance of burrow	Yes Yes	Yes Yes
Heavily sclerotized or dangerous prey	res	res
normally avoided		
Prey size correlated with body size	Yes	Yes
Dead prey normally refused	Yes	Yes
Are ambush predators which optimize use	Yes	Yes
of chemical weapon		
May cany prey to burrow for consumption	Yes	No?
Takes advantage of weak body parts to	Yes	Yes
penetrate prey		
Weaker individuals avoid cannibalistic	Yes	?
members of the taxon in time or space		
Females sometimes consume sexual	Yes	?
partners	100	•
Use same chemical to hunt and for defense	Yes	Yes
Produce striduiation or substrate vibrations	Yes	No?
as warning or in courtship	103	110.
At least some pre-oral digestion	Yes	Yes
Digestion time (hrs)	1 to several	18
	16-33	10-80
Weight increase (%) after a large meal		
Food stored in hepatopancreas	Yes	No
Months that can survive without food	$1-12^{2}$	1-8
Moulting, mating and birth often in burrow	Yes	Yes?
Ecotypic crypsis as protective coloration	Yes	No?
Suffer parasization by nematodes	Yes	No?
Are attacked by parasitoids	No	No?
Proportion (%) of population with acari	3-42<	?
Normal number of acari per host	20-30<	?
*		

REPRODUCTION

	Types of reproduction	Viviparity	Oviparity Ovoviviparity
			Viviparity
	Parthenogenesis known in the group	Yes	Yes
	• • •		
	Reproductive seasonality	Present	Present
	Sexes brought together via pheromones	Yes	Probably
	Sex of leader in courtship and mating	Male	?
	Females often heavier than males	Yes	Yes
	Consumption of spermatophore by females and or males	Yes	Yes
	Some males insert vaginal plugs	Yes	Unnecessary in most spp.
	Males mate more than once	Yes	Yes
	Females mate more than once	Yes	Some
		Yes	Yes
	Females can reproduce more than once		
	One insemination may produce multiple broods	Yes	Yes
	Gravid females can mate	Yes	Some
	Starved females can resorb embryos	Yes	Yes?
	Gestation (months)	2-24	6-14
	Age at first reproduction (months)	6-48	Males 0.25?-1 1 Fem. (x) 15-30
	Synchrony in parturition.	Present	In some?
month staruation lim	it may be an exaggeration	riesent	III some:
monul starvation ini	it may be an exaggeration		
	Duration of parturition (hr)	1-24	0.25-0.75
	Theratological malformations	Not rare	Rare
	Litter size (often equal to fertility	1-105	1-53
		1-105	1-55
	measured as offspring/year)		
	Larger mothers have larger litters	Yes	Yes
	Larger litters may have smaller young	Yes	Yes
	Days the young remain with mother	3-20	1-few
	Young do not feed for several days	Yes	Yes
	Young with high water loss and gain water from body contact with mother	Yes?	?
	Mother recognizes offspring chemically	Yes	?
	Young can be cannibalized by adults	Yes	?
	Duration of first instar (days)	1-14	< 13
	Number of molts throughout life	4-9	93-140
	Time between molts	1?-11	12-25 days
		months	
	Maximum female molts before maturity	9	47
	Minimum male molts before maturity	4	4
	5		-
	Age to maturity (months)	6-83	2-19
	Males mature earlier than females	Sometimes	Often
	Longevity (years)	2-25	1-7
	POPULATION BIOLOGY		
		Vac	Vac
	Fligh mortality shortly after birth	Yes	Yes
	Low mortality of inmatures	Yes	No?
	High mortality of adults	Yes	No
	Sex ratio at birth near 1:1	Yes	Yes
	Adult sex ratio often female-biassed	Yes	Yes
	Male-biassed ratios can result from cannibalistic males	Yes	?
	Population increase rate	1.5-7	?
	Parental investment (as % of body weight)	11-45	8-85
	Total female output (offspring/lifetime)	$e.g.70^{3}$	6-48
	Density dependent mortality common	Yes	Yes?
	Small population flucttions	Yes	Yes
	Density (individuals/m)	0002-12 0	05-1
	Biomass (kg/Ha)	1.23-20	8.3
	Prey biomass (kg/Ha)	Above 12	?

Table sources: LAVALLARD and CAMPIGLI 1975; LAVALLARD *et at.*, 1975; RUHBERG and NUTTING, 1980; READ, 1985; RUHBERG, 1985; KOVOOR *et at.*, 1987; READ and HUGHES, 1987; CAMPIGLIA and LAVALLARD, 1989; POLLS, 1990; LOURENÇO, 1992, 1994; LOURENÇO and CUEUAR, 1994; MONGE-NAJERA, 1994a, 1995; MONGE-NAJERA and MORERA, 1994; MONGE-NAJERA *el at.*, 1993.

³Range may exceed 4-200

² A 12